

Brief Introduction to Continuous Sign Language Recognition

魏承承 2019.1.19

□ What does a continuous **sign language recognition (SLR)** system do?

word vocabulary: apple, sun, today, catch, you

Evaluation on Continuous SLR

Word Error Rate (WER)

 $\mathrm{WER} = \frac{\# \mathrm{sub} + \# \mathrm{del} + \# \mathrm{ins}}{\# \mathrm{words} \ \mathrm{in} \ \mathrm{reference}},$

For example, prediction: I (have) a cat that named Jerry. groundtruth: I have a cat named Tom.

Calculate the WER: $\frac{1+1+1}{6}=0.5$

- Continuous SLR is weakly-supervised
- □ 解决 Continuous SLR 问题的主流思路
 - 受语音识别领域启发:对每一帧识别,合并结果
 - ✓ Connectionist Temporal Classification (CTC)
 - CNN-RNN-CTC framework
 - 受机器翻译领域启发:从特征序列映射到文本序列
 - Encoder-Decoder framework

□ CTC: 逐一识别, 再合并

Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification: labelling unsegmented sequence data with 5 recurrent neural networks. ICML 2006

Runpeng Cui^{*} Hu Liu^{*} Changshui Zhang Department of Automation, Tsinghua University State Key Laboratory of Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China

{crp16@mails, liuhu15@mails, zcs@mail}.tsinghua.edu.cn

Framework : Spatio-temporal CNN - BLSTM - CTC

Figure 1. This is the overview of our staged training approach: (1) end-to-end-training the full architecture with feature and sequence learning components to predict the alignment proposal; (2) training the feature extractor with the alignment proposal; (3) training sequence learning component with the improved representation sequence as input, which is given by the fine-tuned feature extractor.

Step1: end-to-end learning

Conv1D: 沿时间维度卷积

$$\Pr\left(\boldsymbol{\pi}|\boldsymbol{x}\right) = \prod_{n=1}^{N} \Pr\left(\boldsymbol{\pi}_{n}|\boldsymbol{x}\right) = \prod_{n=1}^{N} P_{\boldsymbol{\pi}_{n},n}^{c}, \quad (6)$$

$$\Pr(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\pi \in \mathcal{B}^{-1}(\boldsymbol{y})} \Pr(\pi|\boldsymbol{x}), \tag{7}$$

$$\mathcal{L}_{\rm CTC}(\boldsymbol{x}, \boldsymbol{y}) = -\log \Pr(\boldsymbol{y} | \boldsymbol{x}). \tag{8}$$

$$\mathcal{L} = \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \frac{1}{|\mathcal{S}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{S}} \mathcal{L}_{\text{CTC}}(\boldsymbol{x}, \boldsymbol{y}), \quad (9)$$

□ Step2: Feature learning with alignment proposal

- alignment proposal: output of BLSTM
- to finetune the spatio-temporal feature extractor

Spatio-temporal feature extractor
CNN (VGG-S / GoogLeNet)
conv1D-3-1024
maxpool1D-2
conv1D-3-1024
maxpool1D-2

$$\mathcal{L}_{\text{align}}(\boldsymbol{x}, P^{\alpha}(\boldsymbol{x})) = \frac{1}{N} \sum_{n=1}^{N} d_{\text{KL}}(p_n \| \varphi(s_n)), \qquad (11)$$

$$\mathcal{L} = \frac{1}{|\mathcal{S}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{S}} \mathcal{L}_{\text{align}}(\boldsymbol{x}, P^{\alpha}(\boldsymbol{x})).$$
(12)

□ Step3: Sequence learning from representations

Spatio-temporal feature extractor						
CNN (VGG-S / GoogLeNet)						
conv1D-3-1024						
maxpool1D-2						
conv1D-3-1024						
maxpool1D-2						
Recurrent neural net	Detection net					
BLSTM-512 conv1D-2-256						
conv1D-2-256						
fully connected layer fully connected layer						
softmax softmax						

$$z_k = \sum_{n=1}^{N} P_{kn}^{c} \cdot P_{kn}^{d}, \qquad (13)$$

$$\mathcal{L}_{det}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{k \in \mathcal{A} \setminus \mathcal{Y}} \log(1 - z_k) + \sum_{k \in \mathcal{Y}} \log z_k.$$
(14)

$$\mathcal{L} = \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \frac{1}{|\mathcal{S}|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{S}} (\mathcal{L}_{\text{CTC}} + \mu \mathcal{L}_{\text{det}})(\boldsymbol{x}, \boldsymbol{y}), \quad (15)$$

CTC

Experimental results

Madal action	Validation	Test		
Model setup	del / ins / WER	del / ins / WER		
Our-end2end	16.3 / 6.7 / 46.2	15.1 / 7.4 / 46.9		
RNN	19.6 / 5.4 / 45.0	18.1 / 6.2 / 44.8		
LSTM	18.1 / 5.7 / 43.3	17.1 / 6.6 / 43.6		
BLSTM	14.9 / 6.7 / 41.4	15.1 / 7.1 / 41.9		
BLSTM+det net	13.7 / 7.3 / 39.4	12.2 / 7.5 / 38.7		

Table 3. Recognition results for sequence learning stage on RWTH-PHOENIX-Weather 2014 multi-signer dataset in [%]. We assess the performance of different recurrent models and our proposed detection net. "BLSTM+det net" stands for the employed model with bidirectional LSTM and detection net, and "Our-end2end" for the full model with best performance in the stage of end-to-end training.

Comparisons

Model setup	Extra	Modality			Validation		Test	
woder setup	supervision	r-hand	traj	face	del / ins	WER	del / ins	WER
HOG-3D [16]		\checkmark			25.8/4.2	60.9	23.2 / 4.1	58.1
[16] CMLLR		\checkmark	\checkmark	\checkmark	21.8/3.9	55.0	20.3 / 4.5	53.0
1-Mio-Hands [18]	\checkmark	\checkmark			19.1 / 4.1	51.6	17.5/4.5	50.2
1-Mio-Hands [18]+[16]	\checkmark	\checkmark	\checkmark	\checkmark	16.3 / 4.6	47.1	15.2/4.6	45.1
CNN-Hybrid [19]	\checkmark	\checkmark			12.6 / 5.1	38.3	11.1 / 5.7	38.8
Our-end2end		\checkmark			16.3 / 6.7	46.2	15.1 / 7.4	46.9
Ours		\checkmark			13.7 / 7.3	39.4	12.2 / 7.5	38.7

Table 4. Performance comparison of different continuous sign language recognition approaches on RWTH-PHOENIX-Weather 2014 multisigner dataset in [%]. "r-hand" stands for right hand and "traj" stands for trajectory motion. "Extra supervision" imported in [18] contains a sign language lexicon mapping signs to hand shape sequences, and the best result of [19] uses [18]+[16] as the initial alignment.

- Motivated by this paper...
 - alignment proposal: probability distribution -> argmax-> word
 - a staged optimization -> more staged optimization
 -

Shuo Wang¹, Dan Guo^{1*}, Wen-Gang Zhou², Zheng-Jun Zha², Meng Wang¹ ¹ School of Computer and Information Engineering, Hefei University of Technology ² University of Science and Technology of China shuowang.hfut@gmail.com,guodan@hfut.edu.cn,{zhwg,zhazj}@ustc.edu.cn,eric.mengwang@gmail.com

Temporal COV

Figure 2: Illustration of temporal convolution operations in the TCOV module. With the filter number ch_1 and ch_2 , we learn the feature embedding transformation with twice 2-gram (2-item) temporal convolution operations.

Optimization

$$\mathcal{L} = \rho_1 \mathcal{L}_{CTC}(tcov) + \rho_2 \mathcal{L}_{CTC}(bgru) + \rho_3 \mathcal{L}_{CTC}(fl) \qquad (8)$$

Decoding

argmax-> delete blank -> delete continuous repetitions

experimental result

Figure 4: The Performances on hyper-parameter ρ_3 .

experimental result

Fusion Module Set		VAL	4	TEST			
Fusion module Set	del	ins	WER	del	ins	WER	
{TCOV}	14.9	6.3	42.6	14.4	6.5	41.6	
$\{BGRU\}$	10.8	7.3	39.7	9.8	8.1	39.9	
$\{FL\}$	11.5	5.8	39.1	11.1	6.4	39.4	
{TCOV, BGRU}	13.3	5.5	38.2	12.0	5.9	38.1	
$\{(\text{TCOV}, \text{FL}\}\)$	13.5	5.4	39.1	12.9	5.4	38.9	
$\{BGRU, FL\}$	11.6	5.8	38.2	10.7	6.5	38.5	
{TCOV, BGRU, FL}	12.8	5.2	37.9	11.9	5.6	37.8	

Comparisons

Table 6: Compared with other existing methods on RWTH-PHOENIX-Weather Dataset.

Method	Extra	Modality			VAL		TEST	
Method	supervision	r-hand	traj	face	del / ins	WER	del / ins	WER
HOG-3D [18]		\checkmark			25.8 / 4.2	60.9	23.2 / 4.1	58.1
CMLLR [18]		\checkmark	\checkmark	\checkmark	21.8 / 3.9	55.0	20.3 / 4.5	53.0
1-Mio-Hands [19]	\checkmark				19.1 / 4.1	51.6	17.5 / 4.5	50.2
1-Mio-Hands [18, 19]	\checkmark	\checkmark	\checkmark	\checkmark	16.3 / 4.6	47.1	15.2 / 4.6	45.1
CNN-Hybrid [20]	\checkmark	\checkmark			12.6 / 5.1	38.3	11.1 / 5.7	38.8
Staged Optimization [5]		\checkmark			13.7 / 7.3	39.4	12.2 / 7.5	38.7
SubuNets [2]					14.6 / 4.0	40.8	14.3 / 4.0	40.7
Dilated CNN [26]					8.3 / 4.8	38.0	7.6 / 4.8	37.3
LS-HAN [16]					-	-	-	38.3
OUR CTF					12.8 / 5.2	37.9	11.9 / 5.6	37.8

The end

Thank you