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Why GNN?

L1 Euclidean domain & Non-Euclidean domain

Doubt thou the stars are fire,
Doubt that the sun doth move,
Doubt truth to be a liar,
But never doubt I love...

Text

Audio signals

Images

Social networks Regulatory networks

Functional networks 3D shapes



Why GNN?

L1 ConvNets and Euclidean geometry
W Data (image, video, sound) are compositional, they are formed by
patterns that are:
v Local — convolution
v" Multi-scale (hierarchical) - downsampling/pooling
v" Stationary — global/local invariance




Why GNN?

L1 Extend ConvNets to graph-structured data

®  Assumption: Non-Euclidean data are locally stationary and
manifest hierarchical structures.

® How to define compositionality on graphs? (conv. & pooling)
W How to make them fast? (linear complexity)

R Part 1:
. (Standard) L e—l
Signal s,: Image ConvNets [s3issssss|  Classification
h New data
domain
e Part 2:
Signal s.: fMRI Spectral —
enal s ConvNets Classification
Fixed graph G
New data
_— Part 3: domain
i Graph —
Signal s, on graph G ' .
Molecule with atoms ConvNets Classification

: Variables graphs G, 5



Preliminary

L1 Theory

W Graph theory

® Convolution, spectral convolution
W Fourier transform

@ Riemannian manifold

[ 1 Reference

B http://geometricdeeplearning.com/slides/NIPS-GDL..pdf
B http://helper.ipam.ucla.edu/publications/dIt2018/dIt2018 14506.pdf
B https://www.zhihu.com/question/54504471?sort=created



http://geometricdeeplearning.com/slides/NIPS-GDL.pdf
http://helper.ipam.ucla.edu/publications/dlt2018/dlt2018_14506.pdf
https://www.zhihu.com/question/54504471?sort=created

Preliminary

L1 Graph

® Graph G=(V§&)

® Vertices V={l...,n}

o Edges ECVY XYV

@ Vertex weights b; >0foricV

o Edge weights a;; > 0for (i.7) € €

® Vertex fields L*V)={f:V = R"}
Represented as = (f1....,fn)

@ Hilbert space with inner product

(f: Q)LE(VJ = Ziev a; f;9;



Preliminary

L1 Graph Laplacian

@ Represented as a positive semi-definite n X n matrix

Unnormalized Laplacian A=D-A
Normalized Laplacian A=I-D12AD" /2
Random walk Laplacian A=I-D'A
where A = (a;;) and D = diag(}_,; aij)
Figendecomposition of graph Laplacian:

A =PAD'

where ® = (¢,,...,¢,) and A =diag(\y,....A,)

i



Preliminary

L1 Convolution: continuous

@ Given two functions f,¢g:[—m, 7] = R their convolution is a function

m

(fxg)(@)= [ [(@)g(z—a")da’

— T

@ Shift-invariance: f(xz —xo)*g(x) = (f*g)(z — x0)

@ Convolution theorem: Convolution can be computed in the
Fourier domain as

e —— ~

(fxg)=1-9

@ Efficient computation using FFT: O(nlogn)



Preliminary

[ 1 Convolution: discrete

@ Convolution of two vectors f = (f1,...,fn) and g= (g1.,...,9n)"
(fx8)i = > Yli—m)modn " fm Circular convolution

| 91 g2 ... ... gn ]

9n 91 92 -+ Gn-1 f1

frg = S :

g3 g4 --- g1 G2 fn
] | g2 g3 ... ... g1 |

Spatial (2-d) : ~ ~ /

domain Circulant matrix

diagonalised by Fourier basis (Toeplitz)

Inverse Fourier transform
l Hadamard product

i1 o
Spectral domain . /
i \ 7

Fourier transform

Temporal (1-d)

|
HH
HH
_|
-
UQ
o
HH
_|
=)

10

®: DFT matrix/Fourier matrix




Preliminary: aside

L1 “Conv” in Deep Neural Networks.

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[z,:,0] wWO[z,:,01 wll[:z,:,0] olz,:,0]
ofo ffojo o 0 0 -1ff1 fjo 1 1 -1 E? 3
ofjoffrjr o 2 0 01 fjo -1 -1 1 i -1 -1
oz 212 2 1 0 01 [t 0o -1 1 2 -1 4
6 1.0 0 2 0 O wilz,:,1] wllz,:,1] olz,:,1]
0 0 -1 |40 | 0 1 0 2 5 -8
0 5 0 [lo o 10 -1 1 4 4
0 0 ff-140 -11 0 0 -5 -5
] w0l rr2] wilz, 1,21
ofofo o o 0 11
ST 5" o 0 Jfrflo 10 1
o o fo |02 0 dEE .
B B S . Bias b (1x1x1) Bias bl (1x1x1)
o1 0 00 0 0 b{:,:,0] bl[:,:,0]
0 1 271 1 1 -
0 o 0o 0 0
rir2] toggle movement
0 ffo |0 0 00
ofz4rj2 o 0 0
1]0 1 0 0
0O 0o 2 1 0 1 0
c 01 2 2 2 0
0o 21 0 0 1 0
O 0 0 0 0 0 0 11

http://cs231n.qgithub.io/convolutional-networks/



http://cs231n.github.io/convolutional-networks/

Preliminary: aside

L1 “Conv” in Deep Neural Networks.

Convolution Cross-correlation Autocorrelation

Visual comparison of convolution, cross-correlation and
autocorrelation. For the operations involving function f, and
assuming the height of f'is 1.0, the value of the result at 5 different

points is indicated by the shaded area below each point. Also, the

vertical symmetry of f'is the reason f % g and f x g are identical in

this example. 12

https://en.wikipedia.org/wiki/Cross-correlation



https://en.wikipedia.org/wiki/Cross-correlation

Preliminary: aside

o
R

“Cnce

class torch.nn.cConvld(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True) [source]

Applies a 1D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Cin, L) and output
(N, Cout , Lioys ) can be precisely described as:

out(Ny, Cout;) = bias(Cout;) + Zf:o—l weight(Cous, k) * input(Nj, k)

where * is the valid cross-correlation operator, IV is a batch size, C denotes a number of
I
channels, L is alength of signal sequence.

stride controls the stride for the cross-correlation, a single number or a one-element tuple.
padding controls the amount of implicit zero-paddings on both
sides for padding number of points.
dilation controls the spacing between the kernel points; also known as the a trous algorithm. It
is harder to describe, but this link has a nice visualization of what dilatien does.

groups controls the connections between inputs and outputs. in_channels and out_channels must
both be divisible by groups.

At groups=1, all inputs are convolved to all outputs.

At groups=2, the operation becomes equivalent to having two conv layers side by side, each
seeing half the input channels, and producing half the output channels, and both subsequently
concatenated. At groups="in_channels’, each input channel is convolved with its own set of
filters (of size out_channels #/ in_channels).

Depending of the size of your kernel, several (of the last) columns of the input might be lost,
because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to
add proper padding.

https://pytorch.org/docs/0.3.1/nn.html#convolution-layers
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L1 “Conv” in Deep Neural Networks is actually “Cross-correlation”.


https://pytorch.org/docs/0.3.1/nn.html#convolution-layers

Preliminary

L1 Convolution: graph
® Spectral convolution of f.g € L?(V) can be defined by analogy!!!]

(fxg)i= Z \(ﬁ G5k>L2(V) <.g:¢’k>L2(V)J Ok.i

k=1 . . .
product in the Fourier domain

Ny ——
W

inverse Fourier transform g: fllte,r
@ In matrix-vector notation f: signal
= B(® god f) G(A): diagonal matrix,
= ®diag(gy,.... 000 f function of A.
N . )
= BHA)D f=§(BAD )f

® Not shift-invariant (G has no circulant structure)
@ Filter coefficients depend on basis ¢1,..., 0,

@ Expensive computation (no FFT): O(n?)
14



Preliminary

L1 Graph pooling
W Produce a sequence of coarsened graphs
W Max or average pooling of collapsed vertices
W Binary tree arrangement of node indices

g' G2 Coarsening structure

(binary tree)

© As efficient as 1D-Euclidean grid pooling.

15



Fixed graph: Vanilla Spectral Graph ConvNets ;
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR\: ="

L1 Locally connected networks

f; = [-th data feature on graphs, dim(f;) =n x 1
g = [-th feature map, dim(g;) =n x 1
o et g

fr @ @2 %

W
fp [ o™ ® 2
p
g =& Z Wi 1y
Ii=4

Activation, e.g. &(z) = max{x,0} rectified linear unit (ReLU)



Fixed graph: Vanilla Spectral Graph ConvNets

Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR’&""»,,,(

L1 Locally connected networks

Zr3

Figure 2: Spatial Construction as described by (2.1), with K = 2. For illustration purposes, the
pooling operation is assimilated with the filtering stage. Each layer of the transformation loses
spatial resolution but increases the number of filters.

17



Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR\: ="

L1 Spectral convolution

B W e R™" diagonal matrix of learnable spectral filter coefficients
at each layer.

(k—l)

k—
g =& Z PW, @ g,
l/_

18



Fixed graph: Vanilla Spectral Graph ConvNets

Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR\. o

L1 Analysis

Table 1: Classification results on MNIST subsampled on 400 random locations, for different ar-
chitectures. FCN stands for a fully connected layer with N outputs, LRF/N denotes the locally
connected construction from Section with N outputs, MPV is a max-pooling layer with N
outputs, and SPV stands for the spectral layer from Section[3.2]

method Parameters | Error
Nearest Neighbors N/A 4.11
400-FC800-FC50-10 3.6 -10° 1.8
400-LRF1600-MP800-10 7.2-10% 1.8
400-LRF3200-MP800-LRF800-MP400-10 1.6-10° 1.3
400-SP1600-10 (dy = 300, ¢ = n) 3.2-10° 2.6
400-SP1600-10 (dy = 300, g = 32) 1.6-103 2.3
400-SP4800-10 (d; = 300, g = 20) 5-103 1.8
Each sample Is a graph!
(a) (b) 19

Figure 3: Subsampled MNIST examples.



Fixed graph: Vanilla Spectral Graph ConvNets ;
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR\: ="

L1 Analysis
© First spectral graph CNN architecture

No guarantee of spatial localization of filters

O(n) parameters per layer

® O O

O(n?) computation of forward and inverse Fourier transforms
¢, ¢" (no FFT on graphs)

Filters are basis-dependent = does not generalize across graphs

®

20



Fixed graph: ChebyNet
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS: =

L1 Polynomial parametrization for localized filters
B y=dgy(A)d'x, d'd=1
®  Polynomial filter

go(A) = Z 6, A"

y = cpz:e AdeTx—szLk

W Chebyshev polynomial

K-1
go() = ) 6,T*(A)
k=0
v’ Cost: O(KIE|) < O(n?)
®  Why localized?
dg(i,j) > K implies (L*); ; =0 21



Fixed graph: ChebyNet
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS: =

|
L1 Experiments — 24|12
P o Wi, = exp (_ |2 2ZJ||2>

W MNIST: each digit is a graph o

W Text categorization: 10,000 key words make up the graph.

Model Accuracy 1400— : : ' '
1200L| ®*® Chebyshev 4

Linear SVM 65.90 1000L® @ Non-Param / Spline R

Multinomial Naive Bayes 68.51 ‘g 500 o

Softmax 66.28 = I L7

2 600} -

FC2500 64.64 5 400l el

FC2500-FC500 65.76 200 _--°

i e-

GC32 68.26 05000 4000 6000 8000 10000 12000
Table 2: Accuracies of the proposed graph  Figure 3: Time to process a mini-batch of § = 100
CNN and other methods on 20NEWS. 20NEWS documents w.r.t. the number of words n.

Accuracy
Dataset  Architecture Non-Param (2) Spline (7) [4] Chebyshev (4)
MNIST GCI0 95.75 97.26 97.48
MNIST GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

22
Table 3: Classification accuracies for different types of spectral filters (K = 25).



Fixed graph: ChebyNet :
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS: =

L1 Analysis

©
©
©

® O

Filters are exactly localized in rhops support

O(1) parameters per layer

No computation of ¢, ¢ = O(n) computational complexity
(assuming sparsely-connected graphs)

Stable under coefficients perturbation

Filters are basis-dependent = does not generalize across graphs

23



Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR \:~="

L1 Simplification of ChebyNet

K
gor * X ~ Z 0. T (L)x
k=0 K=1

~0pr + 07 (L—1Iy)x

=0z —0,D 2AD g

~ 0 (IN n D—%AD—%) 2

24



Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR \:~="

]
L1 Input-output
Z=D"2AD"2X6©
B X e RVXC (-d feature vector for N nodes.

B 0 e R“%F, matrix of filter parameters.
m 7 e RM*F, F-d output vector for N nodes.

L1 Two-layer network
7 = f(X, A) = softmax (21 ReLU (AXW<0>) W<1>)

L1 Loss over labeled examples

F
L==) ) Y;InZy

leyr f=1
25



Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR \:~="

L1 Datasets
W  Whole dataset as a graph: N = N;,qin, + Nygi + Niost

Table 1: Dataset statistics, as reported in|Yang et al.|(2016).

Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44 338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001

Table 2: Summary of results in terms of classification accuracy (in percent).

Method Citeseer Cora Pubmed NELL
ManiReg 60.1 59.5 70.7 21.8
SemiEmb 59.6 59.0 71.1 26.7
LP 45.3 68.0 63.0 26.5
DeepWalk 43.2 67.2 65.3 58.1
ICA 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7 (26s)  75.7(13s) 77.2(25s) 61.9 (185s)
GCN (this paper)  70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s) 26




Fixed graph: GCN :
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR \:~="

L1 Visulization (one labeled point for each class)

1.0}

0.5

®

-1.0 =0.5 0.0 0.5 1.0 27



Fixed graph: CayleyNet

CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters, 2017

L1 Cayley transform
X —1
X+

C(x) =
L1 Cayley polynomial

gen(N) = o+ 2Re{ D" ¢;(hA =) (A +3) /|

=1

L1 Cayley filter

G =col + ) ¢;C(hA) +5;C77(hA)

J=1

W Any spectral filter can be formulated as a Cayley filter.

28



Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

1 Matrix (R™*™) completion

G,.:Tow graph,m X m

E/

row graph

%) column graph
¥

~ '”/.,\8
>

G.:col. graph,n X n

29




Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
|

1 Matrix (R™*™) completion

Problem:

min rank(X) S.L. Zij = Yij, Vg € Q (NP-hard)

X

l

. 7
min X[l + 5[ (X — Y) %

Geometric matrix completion

: p
min [1X]13, + X3, + 5lle e (X - Y)|?

Factorized model
v" Low-rank factorization (for large matrix):

o1
1 —
W, H 2

l Graph-based

1 1 14
min - [[WIig, + SIH[Z, + e (WH'

I:|l«: sum of singular values
||| p: Frobenius norm

1 p
W%+ §I|HII% +5lIs2o (WH' —Y)|%

|-lg: Dirichlet norm
IX|Ig = trace(XTA,X)
IX|Ig = trace(XA.X")

HnXr

30

-Y)|i




Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

L1 Multi-graph CNNs (MGCNN)

B 2-d Fourier transform of an matrix can be thought of as applying
a 1-d Fourier transform to its rows and columns.

®,., eigenvecors w.r.t G,
d,, eigenvecors w.r.t G,

X =3 XP,

W Multi-graph spectral convolution
X+xY =®,(XoY)®,

W p-order Chebyshev polynomial filters

I
=
)

q g p
X, =¢ (Z X *Yw) —¢ (Z > 933,,”,TJ(AT)XZ,TJ,(Ac)) , 1
I'=1

I'=14.j'=0

input dim.: mxn xq'
output dim.: m Xn X q 31




Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

L1 Separable convolution (SMGCNN)

B Complexity:0(m +n) < O(mn)

\Xfl = (Z Z ll’T Wlf) y fll - (Z Z 0, ”;T hlf)

I’=1 =0 I’'=13"=0

32



Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

L1 Architectures
B RNN: diffuse the score values X® progressively.

X0 — x®) L gx®

P

X () X
MGCNN = RNN

. row+column filtering

4
Y

HED — H® L dg®

' (t)
H® =582 dH
L] HT » GCNN = RNN

column filtering

B 2
) ’ WD — W) | qw)

®)
’ W W dw
> GCNN = RNN

row filtering

MGCNN

SMGCNN

33



Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
|

L1 Loss
® 0,0, 0. chebyshev polymial coef ficients
W 0:LSTM,T:number of iterations
® MGCNN

T T
(0,0) = X5 [1% + X512

M T
.+ 51920 (XL, — Y2

® sMGCNN

M T T
U6,.0c.0) = [Wo I3, + | Hy. |13, + 51120 (Wo ), (He ) = V)|

34



Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

L1 Algorithm
Algorithm 1 (RMGCNN)

input m x n matrix X(°) containing initial val-
ues
I: fort =0:7do
2:  Apply the Multi-Graph CNN (13} on X *)
producing an m x n x ¢ output X *),
3:  for all elements (7, j) do

: : ~ (1) _
4: Apply RNN to ¢-dim X, —
A 1y roducing incrementa
51, #};)) producing i 1
(1)
update dx;;
5:  end for
6: Update X(t+1) = X® + dx®
7: end for

35



Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

L] Results
B MovielLens dataset:
v 100,000 ratings (1-5) from 943 users on 1682 movies (6.3%).

Each user has rated at least 20 movies.
User: user id | age | gender | occupation | zip code
Movie: movie id | movie title | release date | video release date |

IMDb URL | unknown | Action | Adventure | Animation |

Children's | Comedy | Crime | Documentary | Drama | Fantasy | ......

AN NI

Table 4: Performance (RMS error)
of different matrix completion meth-
ods on the MovieLens dataset.

METHOD RMSE
GLOBAL MEAN  [.154
USER MEAN 1.063
MOVIE MEAN 1.033
MC [9] 0.973
IMC 1.653
GMC 0.996

GRALS 0.945

SRMGCNN 0.929 36




Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

[1 Desiderata => well generalized.

¥ [nvariant to node ordering
v No graph isomorphism problem (nttps:/en.wikipedia.oro/wiki/Graph_isomorphism)

An isomor phism
between G and H

fla)=1
fb) =
o =
fd) =
fg) =
fih) =
i) =
) =

Graph G Graph H

N A v w® oo

W Locality
v" Operations depend on the neighbors of a given node
®  Number of model parameters should be independent of graph size

® Model should be independent of graph structure and we should be
able to transfer the model across graphs.

37


https://en.wikipedia.org/wiki/Graph_isomorphism

Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

L1 Learn to propagate information across the graph to compute
node features.

] o2

[ T
O
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

38



Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

L1 Update

N hflo): attribute of node A
W Y ():aggregator function(e.g.,avg/lstm/max — pooling)

wo QY ®
TARGET NODE g VV(2) Q(Z) . ‘ .
l / 7/ h(l)
1) W T e @
N _ hA " W) 3
hy) @ 7. 42 ol
NhiiyT . W g
z =
INPUT GRAPH hg L. .
D
Update for node A:
k+1 k k
R{*Y = ReLU (W®R(P, E (ReLU(Q®h; ))))
! J
Y Y
k + 1" level Transform A’s ownnEN(A) Transform and aggregate
features of node A features from level k features of neighbors n
39



Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

L1 Algorithm

initialize representations as features
K = “search depth”

h! « x,, Vv %%/ | | |
fork — 1. Ko aggregate information from neighbors

forv e Vdo
b/ ,, < AGGREGATE ({hi~!,Vu € N'(v)});
bl o (W* - concat(ht~", hly(,))

end

k k k
hy < hy/||h;ll2, Vo € Veoncatenate neighborhood info with

end current representation and propagate
z, — hEX Yo eV

\

Q
1
J = —log (U(ZIZ1))) . @ ' ZEv"NP,,(v) log (_U(ZIZUH))
g=1

classification (cross-entropy) loss
40



Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

L1 Training

m Batch

BATCH OF NETWORKS _
® @ @ @ °

we) we W
Q2 " Q@ _ Q2. , | J\ b

Qo) \. . ‘ \. ‘./ . . ‘ ‘ [} \. ‘( ‘ " °
* deee® %6 ot “ ‘oo Ch see "%, % %ei. o°

W Learnable parameters
v" Aggregate function
v' Matrix W

41



Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

L1 Specify different weights to different nodes in a neighbor.
W Self-attention

Node features: h — {El, EQ, Cee FLN}, ]_7:@ c RF

Attention: importance of node j to node i.

€ij — a(th,Whj) ] = M

_ exp(ez-j)
2_ken; €XP(€ik)

softmax

a;; = softmax;(e;;)

42



Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

L1 Specify different weights to different nodes in a neighbor.
W Aggregation (K-head attention)

43



Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

L1 EXxperiments
m Datasets

Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed PPI
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)

# Test Nodes 1000 1000 1000 5524 (2 graphs)

44



Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

L1 EXxperiments
W Transductive learning (single fixed graph)
® Inductive learning (unseen nodes / new graph)

Transductive

Method Cora Citeseer Pubmed

MLP 55.1% 46.5% 71.4%

ManiReg (Belkin et al.|[2006) 59.5% 60.1% 70.7%

SemiEmb (Weston et a]:H201'2) 59.0% 59.6% 71.7%

LP (Zhu et al.[[2003) ' 68.0% 45.3% 63.0%

DeepWa crozzi et al.,|2014) 67.2% 43.2% 65.3%

ICA (Lu & Getoor ) 75.1% 69.1% 73.9%

Planetoid (Yang et al.||2016) 75.7% 64.7% 77.2%

Chebyshev (Defferrard et al., 2016)  81.2% 69.8% 74.4%

GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%

MoNet(mz 16 81.74+05% — 78.8 +£0.3%

GCN-64* 814 +0.5% 709+0.5% 79.0=+0.3%

GAT (ours) 83.0£07% 725x£07% 79.0+03%

Inductive

Method PPI
Random 0.396
MLP 0.422

GraphSAGE-GCN (Hamilton et al.,[2017)  0.500
GraphSAGE-mean (Hamilton et al.|[2017)  0.598
GraphSAGE-LSTM (Hamilton et al.[[2017) 0.612

GraphSAGE-pool (jHaml ton et al. 0.600
GraphSAGE” 0.768
Const-GAT (ours) 0.934 +£0.006 45

GAT (ours) 0.973 + 0.002




Tasks

Citation networks
Recommender systems
Medical imaging

Particle physics and Chemistry
Computer graphics

oooooo
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