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Why GNN?

 Euclidean domain & Non-Euclidean domain
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Why GNN?

 ConvNets and Euclidean geometry

 Data (image, video, sound) are compositional, they are formed by 

patterns that are:

 Local → convolution

 Multi-scale (hierarchical) → downsampling/pooling

 Stationary → global/local invariance
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Why GNN?

 Extend ConvNets to graph-structured data

 Assumption: Non-Euclidean data are locally stationary and 

manifest hierarchical structures.

 How to define compositionality on graphs? (conv. & pooling)

 How to make them fast? (linear complexity)
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Preliminary

 Theory

 Graph theory

 Convolution, spectral convolution

 Fourier transform

 Riemannian manifold

 ……

 Reference

 http://geometricdeeplearning.com/slides/NIPS-GDL.pdf

 http://helper.ipam.ucla.edu/publications/dlt2018/dlt2018_14506.pdf

 https://www.zhihu.com/question/54504471?sort=created
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http://geometricdeeplearning.com/slides/NIPS-GDL.pdf
http://helper.ipam.ucla.edu/publications/dlt2018/dlt2018_14506.pdf
https://www.zhihu.com/question/54504471?sort=created


Preliminary

 Graph
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Preliminary

 Graph Laplacian

8



Preliminary

 Convolution: continuous
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Preliminary

 Convolution: discrete
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𝚽:𝐷𝐹𝑇 𝑚𝑎𝑡𝑟𝑖𝑥/𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥

Hadamard product

Fourier transform

inverse Fourier transform

Spatial (2-d)

Temporal (1-d)

Spectral domain

domain

Circular convolution



Preliminary: aside

 “Conv” in Deep Neural Networks.
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http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


Preliminary: aside

 “Conv” in Deep Neural Networks.
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https://en.wikipedia.org/wiki/Cross-correlation

https://en.wikipedia.org/wiki/Cross-correlation


Preliminary: aside

 “Conv” in Deep Neural Networks is actually “Cross-correlation”.
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https://pytorch.org/docs/0.3.1/nn.html#convolution-layers

https://pytorch.org/docs/0.3.1/nn.html#convolution-layers


Preliminary

 Convolution: graph
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𝒈: 𝑓𝑖𝑙𝑡𝑒𝑟
𝒇: 𝑠𝑖𝑔𝑛𝑎𝑙

 𝑔 𝚲 : 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥,

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝚲.



Preliminary

 Graph pooling

 Produce a sequence of coarsened graphs

 Max or average pooling of collapsed vertices

 Binary tree arrangement of node indices
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Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

 Locally connected networks
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Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

 Locally connected networks
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Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

 Spectral convolution

 𝑾 ∈ ℝ𝑛×𝑛, diagonal matrix of learnable spectral filter coefficients 

at each layer.
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Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

 Analysis
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Each sample is a graph!



Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

 Analysis
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Fixed graph: ChebyNet
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS

 Polynomial parametrization for localized filters

 𝑦 = 𝚽𝑔𝜃 𝜦 𝚽𝑇𝑥,𝚽𝑇𝚽 = 𝑰

 Polynomial filter

 Chebyshev polynomial

 Cost: 

 Why localized?
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Fixed graph: ChebyNet
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS

 Experiments

 MNIST: each digit is a graph

 Text categorization: 10,000 key words  make up the graph.
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Fixed graph: ChebyNet
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS

 Analysis
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Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
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 Simplification of ChebyNet

K=1



Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
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 Input-output

 𝑋 ∈ ℝ𝑁×𝐶, 𝐶-d feature vector for 𝑁 nodes.

 Θ ∈ ℝ𝐶×𝐹,  matrix of filter parameters.

 𝑍 ∈ ℝ𝑁×𝐹, 𝐹-d output vector for 𝑁 nodes.

 Two-layer network

 Loss over labeled examples



Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
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 Datasets

 Whole dataset as a graph: 𝑁 = 𝑁𝑡𝑟𝑎𝑖𝑛 + 𝑁𝑣𝑎𝑙 + 𝑁𝑡𝑒𝑠𝑡



Fixed graph: GCN
Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
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 Visulization (one labeled point for each class)



Fixed graph: CayleyNet
CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters, 2017

 Cayley transform

 Cayley polynomial

 Cayley filter

 Any spectral filter can be formulated as a Cayley filter.
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𝐶 𝑥 =
𝑥 − 𝑖

𝑥 + 𝑖



Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Matrix (ℝ𝑚×𝑛) completion

29𝒢𝑐: 𝑐𝑜𝑙. 𝑔𝑟𝑎𝑝ℎ, 𝑛 × 𝑛

𝒢𝑟: 𝑟𝑜𝑤 𝑔𝑟𝑎𝑝ℎ,𝑚 ×𝑚



Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Matrix (ℝ𝑚×𝑛) completion

 Problem: 

 Geometric matrix completion

 Factorized model

 Low-rank factorization (for large matrix):
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(NP-hard)

∙ ⋆: 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒𝑠
∙ 𝐹: 𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠 𝑛𝑜𝑟𝑚

∙ 𝒢: 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑛𝑜𝑟𝑚

𝑿 𝒢𝑟
2 = 𝑡𝑟𝑎𝑐𝑒 𝑿𝑇𝚫𝑟𝑿

𝑿 𝒢𝑐
2 = 𝑡𝑟𝑎𝑐𝑒(𝑿𝚫𝑐𝑿

𝑇)

Graph-based

𝑊,𝑚 × 𝑟
𝐻, 𝑛 × 𝑟



Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Multi-graph CNNs (MGCNN)

 2-𝒅 Fourier transform of an matrix can be thought of as applying 

a 1-𝒅 Fourier transform to its rows and columns.

 Multi-graph spectral convolution

 𝑝-order Chebyshev polynomial filters

Φ𝑟 , 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑜𝑟𝑠 𝑤. 𝑟. 𝑡 𝒢𝑟
Φ𝑐 , 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑜𝑟𝑠 𝑤. 𝑟. 𝑡 𝒢𝑐

𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑚. ∶ 𝑚 × 𝑛 × 𝑞′

𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚. ∶ 𝑚 × 𝑛 × 𝑞 31



Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Separable convolution (sMGCNN)

 Complexity:𝒪 𝑚 + 𝑛 < 𝒪 𝑚𝑛
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Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Architectures

 RNN: diffuse the score values  𝑋(𝑡) progressively. 

MGCNN

sMGCNN

33



Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Loss

 Θ, 𝜃𝑟 , 𝜃𝑐: 𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑝𝑜𝑙𝑦𝑚𝑖𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

 𝜎: 𝐿𝑆𝑇𝑀, 𝑇: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

 MGCNN

 sMGCNN
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Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Algorithm 
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Fixed graph: Multiple graphs
Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 Results

 MovieLens dataset:

 100,000 ratings (1-5) from 943 users on 1682 movies (6.3%). 

 Each user has rated at least 20 movies. 

 User: user id | age | gender | occupation | zip code

 Movie: 
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movie id | movie title | release date | video release date |

IMDb URL | unknown | Action | Adventure | Animation |

Children's | Comedy | Crime | Documentary | Drama | Fantasy | ……



Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

 Desiderata => well generalized.

 Invariant to node ordering

 No graph isomorphism problem (https://en.wikipedia.org/wiki/Graph_isomorphism)

 Locality

 Operations depend on the neighbors of a given node

 Number of model parameters should be independent of graph size

 Model should be independent of graph structure and we should be 

able to transfer the model across graphs.
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https://en.wikipedia.org/wiki/Graph_isomorphism


Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

 Learn to propagate information across the graph to compute 

node features.
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Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

 Update

 ℎ𝐴
(0)
: 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝐴

  (∙) : 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑒. 𝑔. , 𝑎𝑣𝑔/𝑙𝑠𝑡𝑚/𝑚𝑎𝑥 − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔)
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Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

 Algorithm
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Variable graph: GraphSAGE
Inductive Representation Learning on Large Graphs, 2017, NIPS

 Training

 Batch

 Learnable parameters

 Aggregate function

 Matrix W
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Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

 Specify different weights to different nodes in a neighbor.

 Self-attention
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Node features:

Attention: importance of node 𝑗 to node 𝑖.



Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

 Specify different weights to different nodes in a neighbor.

 Aggregation (K-head attention)
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Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

 Experiments

 Datasets
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Variable graph: Graph Attention Network
Graph attention networks, 2018, ICLR

 Experiments

 Transductive learning (single fixed graph)

 Inductive learning (unseen nodes / new graph)
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Tasks

 Citation networks

 Recommender systems

 Medical imaging

 Particle physics and Chemistry

 Computer graphics

 ……
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