Graph Neural Network

Fang Yuanqiang, 2019/05/18

Graph Neural Network

\square Why GNN?
\square Preliminary
\square Fixed graph

- Vanilla Spectral Graph ConvNets
- ChebyNet
- GCN
- CayleyNet
- Multiple graphs
\square Variable graph
- GraphSAGE
- Graph Attention Network
\square Tasks

Why GNN?

\square Euclidean domain \& Non-Euclidean domain

Audio signals

Images

Social networks

Functional networks

Regulatory networks

3D shapes

Why GNN?

\square ConvNets and Euclidean geometry

- Data (image, video, sound) are compositional, they are formed by patterns that are:
\checkmark Local \rightarrow convolution
$\checkmark \quad$ Multi-scale (hierarchical) \rightarrow downsampling/pooling
$\checkmark \quad$ Stationary \rightarrow global/local invariance

Why GNN?

\square Extend ConvNets to graph-structured data

- Assumption: Non-Euclidean data are locally stationary and manifest hierarchical structures.
- How to define compositionality on graphs? (conv. \& pooling)
- How to make them fast? (linear complexity)

Preliminary

\square Theory

- Graph theory
- Convolution, spectral convolution
- Fourier transform
- Riemannian manifold
-
\square Reference
■ http://geometricdeeplearning.com/slides/NIPS-GDL.pdf
■ http://helper.ipam.ucla.edu/publications/dlt2018/dlt2018 14506.pdf
■ https://www.zhihu.com/question/54504471?sort=created

Preliminary

\square Graph

- Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$
- Vertices $\mathcal{V}=\{1, \ldots, n\}$
- Edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Vertex weights $\quad b_{i}>0$ for $i \in \mathcal{V}$
- Edge weights $a_{i j} \geq 0$ for $(i, j) \in \mathcal{E}$
- Vertex fields $L^{2}(\mathcal{V})=\left\{f: \mathcal{V} \rightarrow \mathbb{R}^{h}\right\}$

Represented as $\quad \mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$

- Hilbert space with inner product

$$
\langle f, g\rangle_{L^{2}(\mathcal{V})}=\sum_{i \in \mathcal{V}} a_{i} f_{i} g_{i}
$$

Preliminary

\square Graph Laplacian

- Represented as a positive semi-definite $\boldsymbol{n} \times \boldsymbol{n}$ matrix
- Unnormalized Laplacian

$$
\boldsymbol{\Delta}=\mathbf{D}-\mathbf{A}
$$

- Normalized Laplacian

$$
\boldsymbol{\Delta}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A D}^{-1 / 2}
$$

- Random walk Laplacian

$$
\boldsymbol{\Delta}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{A}
$$

where $\mathbf{A}=\left(a_{i j}\right)$ and $\mathbf{D}=\operatorname{diag}\left(\sum_{j \neq i} a_{i j}\right)$

- Eigendecomposition of graph Laplacian:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\boldsymbol{\Delta}=\boldsymbol{\Phi} \boldsymbol{\Lambda} \boldsymbol{\Phi}^{\top} \\
\text { where } \boldsymbol{\Phi}=\left(\phi_{1}, \ldots, \phi_{n}\right) \text { and } \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
\left(\mathbf{\Phi}^{\top} \mathbf{\Phi}=\mathbf{I}\right)
\end{array}
\end{aligned}
$$

Preliminary

\square Convolution: continuous

- Given two functions $f, g:[-\pi, \pi] \rightarrow \mathbb{R}$ their convolution is a function

$$
(f \star g)(x)=\int_{-\pi}^{\pi} f\left(x^{\prime}\right) g\left(x-x^{\prime}\right) d x^{\prime}
$$

- Shift-invariance: $f\left(x-x_{0}\right) \star g(x)=(f \star g)\left(x-x_{0}\right)$
- Convolution theorem: Convolution can be computed in the Fourier domain as

$$
\widehat{(f \star g)}=\hat{f} \cdot \hat{g}
$$

- Efficient computation using FFT: $\mathrm{O}(n \log n)$

Preliminary

\square Convolution: discrete

- Convolution of two vectors $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)^{\top}$ and $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right)^{\top}$

$$
(\mathbf{f} \star \mathbf{g})_{i}=\sum_{m} g_{(i-m) \bmod n} \cdot f_{m}
$$

Circular convolution

$$
\mathbf{f} \star \mathbf{g}=\underbrace{\left[\begin{array}{ccccc}
g_{1} & g_{2} & \ldots & \ldots & g_{n} \\
g_{n} & g_{1} & g_{2} & \cdots & g_{n-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
g_{3} & g_{4} & \cdots & g_{1} & g_{2} \\
g_{2} & g_{3} & \cdots & \cdots & g_{1}
\end{array}\right]} \quad\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

Spatial (2-d)
Circulant matrix
diagonalised by Fourier basis (Toeplitz)

Preliminary: aside

\square "Conv" in Deep Neural Networks.

Preliminary: aside

\square "Conv" in Deep Neural Networks.

"Conv" in Deep Neural Networks is actually "Cross-correlation".

class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) [source]

Applies a 1D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size $\left(N, C_{i n}, L\right)$ and output ($\left.N, C_{\text {out }}, L_{\text {out }}\right)$ can be precisely described as:

$$
\operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{i n}-1} \text { weight }\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right)
$$

where \star is the valid cross-correlation operator, N is a batch size, C denotes a number of channels, L is a length of signal sequence.
stride controls the stride for the cross-correlation, a single number or a one-element tuple. padding controls the amount of implicit zero-paddings on both
sides for padding number of points.
dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups.

At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. At groups=`in_channels`, each input channel is convolved with its own set of filters (of size out_channels // in_channels).

(P) Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

Preliminary

\square Convolution: graph

- Spectral convolution of $f, g \in L^{2}(\mathcal{V})$ can be defined by analogy ${ }^{[11]}$

$$
(f \star g)_{i}=\underbrace{\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(\mathcal{V})}\left\langle g, \phi_{k}\right\rangle_{L^{2}(\mathcal{V})}}_{\text {product in the Fourier domain }} \phi_{k, i}}_{\text {inverse Fourier transform }}
$$

- In matrix-vector notation

$$
\begin{aligned}
\mathrm{f} \star \mathbf{g} & =\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{\top} \mathbf{g} \circ \boldsymbol{\Phi}^{\top} \mathbf{f}\right) \\
& =\underbrace{\boldsymbol{\Phi} \operatorname{diag}\left(\hat{g}_{1}, \ldots, \hat{g}_{n}\right) \boldsymbol{\Phi}^{\top}}_{\mathbf{G}} \mathbf{f} \quad \begin{array}{r}
\hat{g}(\boldsymbol{\Lambda}): d i \\
f u
\end{array} \\
& =\boldsymbol{\Phi} \hat{g}(\boldsymbol{\Lambda}) \boldsymbol{\Phi}^{\top} \mathbf{f}=\hat{g}\left(\boldsymbol{\Phi} \boldsymbol{\Lambda} \boldsymbol{\Phi}^{\top}\right) \mathbf{f}=\hat{g}(\boldsymbol{\Delta}) \mathbf{f}
\end{aligned}
$$

- Not shift-invariant (G has no circulant structure)
- Filter coefficients depend on basis $\phi_{1}, \ldots, \phi_{n}$
- Expensive computation (no FFT): O(n^{2})
\boldsymbol{g} : filter
f : signal
$\hat{g}(\boldsymbol{\Lambda})$: diagonal matrix, function of $\boldsymbol{\Lambda}$.

Preliminary

\square Graph pooling

- Produce a sequence of coarsened graphs
- Max or average pooling of collapsed vertices
- Binary tree arrangement of node indices

© As efficient as 1D-Euclidean grid pooling.

Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR
\square Locally connected networks

$$
\begin{aligned}
& \mathbf{f}_{l}=l \text {-th data feature on graphs, } \operatorname{dim}\left(\mathbf{f}_{l}\right)=n \times 1 \\
& \mathbf{g}_{l}=l \text {-th feature map, } \operatorname{dim}\left(\mathbf{g}_{l}\right)=n \times 1
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{g}_{l}=\xi\left(\sum_{l^{\prime}=1}^{p} \mathbf{W}_{l, l^{\prime}} \star \mathbf{f}_{l^{\prime}}\right)
\end{aligned}
$$

Activation, e.g. $\quad \xi(x)=\max \{x, 0\} \quad$ rectified linear unit $(\operatorname{ReLU}) \quad{ }_{16}$

Fixed graph: Vanilla Spectral Graph ConvNets
 Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

\square Locally connected networks

Figure 2: Spatial Construction as described by (2.1), with $K=2$. For illustration purposes, the pooling operation is assimilated with the filtering stage. Each layer of the transformation loses spatial resolution but increases the number of filters.

Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR
\square Spectral convolution
$\boldsymbol{W} \in \mathbb{R}^{n \times n}$, diagonal matrix of learnable spectral filter coefficients at each layer.

$$
\mathbf{g}_{l}^{(k)}=\xi\left(\sum_{l^{\prime}=1}^{q^{(k-1)}} \boldsymbol{\Phi} \mathbf{W}_{l, l^{\prime}}^{(k)} \boldsymbol{\Phi}^{\top} \mathbf{g}_{l^{\prime}}^{(k-1)}\right)
$$

Fixed graph: Vanilla Spectral Graph ConvNets

Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

\square Analysis

Table 1: Classification results on MNIST subsampled on 400 random locations, for different architectures. FCN stands for a fully connected layer with N outputs, LRF N denotes the locally connected construction from Section 2.3 with N outputs, MP N is a max-pooling layer with N outputs, and SPN stands for the spectral layer from Section 3.2.

method	Parameters	Error
Nearest Neighbors	N/A	4.11
400-FC800-FC50-10	$3.6 \cdot 10^{5}$	1.8
400-LRF1600-MP800-10	$7.2 \cdot 10^{4}$	1.8
400-LRF3200-MP800-LRF800-MP400-10	$1.6 \cdot 10^{5}$	$\mathbf{1 . 3}$
400-SP1600-10 $\left(d_{1}=300, q=n\right)$	$3.2 \cdot 10^{3}$	2.6
400-SP1600-10 $\left(d_{1}=300, q=32\right)$	$1.6 \cdot 10^{3}$	2.3
400-SP4800-10 $\left(d_{1}=300, q=20\right)$	$5 \cdot 10^{3}$	1.8

Each sample is a graph!

(a)

(b)

Fixed graph: Vanilla Spectral Graph ConvNets
Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR
\square Analysis
() First spectral graph CNN architecture
: No guarantee of spatial localization of filters
© $\mathrm{O}(n)$ parameters per layer
: $\mathrm{O}\left(n^{2}\right)$ computation of forward and inverse Fourier transforms ϕ, ϕ^{\top} (no FFT on graphs)
(:) Filters are basis-dependent \Rightarrow does not generalize across graphs

Fixed graph: ChebyNet

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS
\square Polynomial parametrization for localized filters

- $y=\boldsymbol{\Phi} g_{\theta}(\boldsymbol{\Lambda}) \boldsymbol{\Phi}^{T} x, \boldsymbol{\Phi}^{T} \boldsymbol{\Phi}=\boldsymbol{I}$
- Polynomial filter

$$
\begin{gathered}
g_{\theta}(\boldsymbol{\Lambda})=\sum_{k=0}^{K-1} \theta_{k} \Lambda^{k} \\
y=\boldsymbol{\Phi} \sum_{k=0}^{K-1} \theta_{k} \boldsymbol{\Lambda}^{k} \boldsymbol{\Phi}^{T} x=\sum_{k=0}^{K-1} \theta_{k} \boldsymbol{L}^{k} x
\end{gathered}
$$

- Chebyshev polynomial

$$
g_{\theta}(\Lambda)=\sum_{k=0}^{K-1} \theta_{k} T^{k}(\widetilde{\Lambda})
$$

\checkmark Cost: $\mathcal{O}(K|\mathcal{E}|) \ll \mathcal{O}\left(n^{2}\right)$

- Why localized?

$$
d_{\mathcal{G}}(i, j)>K \text { implies }\left(L^{K}\right)_{i, j}=0
$$

Fixed graph: ChebyNet

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS
\square Experiments

- MNIST: each digit is a graph

$$
W_{i j}=\exp \left(-\frac{\left\|z_{i}-z_{j}\right\|_{2}^{2}}{\sigma^{2}}\right)
$$

- Text categorization: 10,000 key words make up the graph.

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

Table 2: Accuracies of the proposed graph CNN and other methods on 20NEWS.

Figure 3: Time to process a mini-batch of $S=100$ 20NEWS documents w.r.t. the number of words n.

		Accuracy		
Dataset	Architecture	Non-Param (2)	Spline (7) [4]	Chebyshev (4)
MNIST	GC10	95.75	97.26	97.48
MNIST	GC32-P4-GC64-P4-FC512	96.28	97.15	99.14

Table 3: Classification accuracies for different types of spectral filters $(K=25)$.

Fixed graph: ChebyNet

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS
\square Analysis
(:) Filters are exactly localized in r-hops support
© $\mathrm{O}(1)$ parameters per layer
;) No computation of $\phi, \phi^{\top} \Rightarrow \mathrm{O}(n)$ computational complexity (assuming sparsely-connected graphs)
;-) Stable under coefficients perturbation
(:) Filters are basis-dependent \Rightarrow does not generalize across graphs

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
\square Simplification of ChebyNet

$$
\begin{aligned}
g_{\theta^{\prime}} \star x & \approx \sum_{k=0}^{K} \theta_{k}^{\prime} T_{k}(\tilde{L}) x \\
& \approx \theta_{0}^{\prime} x+\theta_{1}^{\prime}\left(L-I_{N}\right) x \\
& =\theta_{0}^{\prime} x-\theta_{1}^{\prime} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x \\
& \approx \theta(\underbrace{\left(I_{N}+D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right) x}_{\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}}
\end{aligned}
$$

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
\square Input-output

$$
Z=\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta
$$

■ $\quad X \in \mathbb{R}^{N \times C}, C$-d feature vector for N nodes.

- $\Theta \in \mathbb{R}^{C \times F}$, matrix of filter parameters.

■ $Z \in \mathbb{R}^{N \times F}, F$-d output vector for N nodes.
\square Two-layer network

$$
Z=f(X, A)=\operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A} X W^{(0)}\right) W^{(1)}\right)
$$

\square Loss over labeled examples

$$
\mathcal{L}=-\sum_{l \in \mathcal{Y}_{L}} \sum_{f=1}^{F} Y_{l f} \ln Z_{l f}
$$

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR

\square Datasets

- Whole dataset as a graph: $N=N_{\text {train }}+N_{\text {val }}+N_{\text {test }}$

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	$64.7(26 \mathrm{~s})$	$75.7(13 \mathrm{~s})$	$77.2(25 \mathrm{~s})$	$61.9(185 \mathrm{~s})$
GCN (this paper)	$\mathbf{7 0 . 3}(7 \mathrm{~s})$	$\mathbf{8 1 . 5}(4 \mathrm{~s})$	$\mathbf{7 9 . 0}(38 \mathrm{~s})$	$\mathbf{6 6 . 0}(48 \mathrm{~s})$

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR
\square Visulization (one labeled point for each class)

Fixed graph: CayleyNet

CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters, 2017
\square Cayley transform
\square Cayley polynomial

$$
C(x)=\frac{x-i}{x+i}
$$

$$
g_{\mathrm{c}, h}(\lambda)=c_{0}+2 \operatorname{Re}\left\{\sum_{j=1}^{r} c_{j}(h \lambda-i)^{j}(h \lambda+i)^{-j}\right\}
$$

\square Cayley filter

$$
\mathbf{G}=c_{0} \mathbf{I}+\sum_{j=1}^{r} c_{j} \mathcal{C}^{j}(h \boldsymbol{\Delta})+\overline{c_{j} \mathcal{C}^{-j}}(h \boldsymbol{\Delta})
$$

- Any spectral filter can be formulated as a Cayley filter.

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
\square Matrix $\left(\mathbb{R}^{m \times n}\right)$ completion

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
\square Matrix $\left(\mathbb{R}^{m \times n}\right)$ completion

- Problem:

$$
\min _{\mathbf{X}}\|\mathbf{X}\|_{\star}+\frac{\mu}{2}\|\boldsymbol{\Omega} \circ(\mathbf{X}-\mathbf{Y})\|_{F}^{2} \quad \begin{aligned}
& \|\cdot\|_{\star} \text { : sum of singular values } \\
& \|\cdot\|_{F}: \text { Frobenius norm }
\end{aligned}
$$

- Geometric matrix completion

$$
\min _{\mathbf{X}}\|\mathbf{X}\|_{\mathcal{G}_{r}}^{2}+\|\mathbf{X}\|_{\mathcal{G}_{c}}^{2}+\frac{\mu}{2}\|\boldsymbol{\Omega} \circ(\mathbf{X}-\mathbf{Y})\|_{\mathbf{F}}^{2} \begin{aligned}
& \|\boldsymbol{X}\|_{\mathcal{G}_{r}}^{2}=\operatorname{trace}\left(\boldsymbol{X}^{T} \boldsymbol{\Delta}_{r} \boldsymbol{X}\right) \\
& \|\boldsymbol{X}\|_{\mathcal{G}_{c}}^{2}=\operatorname{trace}\left(\boldsymbol{X} \boldsymbol{\Delta}_{c} \boldsymbol{X}^{T}\right)
\end{aligned}
$$

- Factorized model
$\checkmark \quad$ Low-rank factorization (for large matrix): $\quad \mathbf{X}=\mathbf{W H}^{\top} \begin{aligned} & W, m \times r \\ & H, n \times r\end{aligned}$

$$
\begin{array}{r}
\min _{\mathbf{W}, \mathbf{H}} \frac{1}{2}\|\mathbf{W}\|_{\mathrm{F}}^{2}+\frac{1}{2}\|\mathbf{H}\|_{\mathrm{F}}^{2}+\frac{\mu}{2}\left\|\boldsymbol{\Omega} \circ\left(\mathbf{W} \mathbf{H}^{\top}-\mathbf{Y}\right)\right\|_{\mathrm{F}}^{2} \\
\downarrow \text { Graph-based }
\end{array}
$$

$$
\min _{\mathbf{W}, \mathbf{H}} \frac{1}{2}\|\mathbf{W}\|_{\mathcal{G}_{r}}^{2}+\frac{1}{2}\|\mathbf{H}\|_{\mathcal{G}_{c}}^{2}+\frac{\mu}{2}\left\|\boldsymbol{\Omega} \circ\left(\mathbf{W} \mathbf{H}^{\top}-\mathbf{Y}\right)\right\|_{\mathrm{F}}^{2}
$$

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

\square Multi-graph CNNs (MGCNN)

- 2-d Fourier transform of an matrix can be thought of as applying a 1-d Fourier transform to its rows and columns.

$$
\hat{\mathbf{X}}=\mathbf{\Phi}_{r}^{\top} \mathbf{X} \mathbf{\Phi}_{c} \quad \begin{array}{|l}
\Phi_{r}, \text { eigenvecors w.r.t } \mathcal{G}_{r} \\
\Phi_{c}, \text { eigenvecors w.r.t } \mathcal{G}_{c}
\end{array}
$$

- Multi-graph spectral convolution

$$
\mathbf{X} \star \mathbf{Y}=\boldsymbol{\Phi}_{r}(\hat{\mathbf{X}} \circ \hat{\mathbf{Y}}) \boldsymbol{\Phi}_{c}^{\top}
$$

- p-order Chebyshev polynomial filters

$$
\tilde{\mathbf{X}}_{l}=\xi\left(\sum_{l^{\prime}=1}^{q^{\prime}} \mathbf{X}_{l^{\prime}} \star \mathbf{Y}_{l l^{\prime}}\right)=\xi\left(\sum_{l^{\prime}=1}^{q^{\prime}} \sum_{j, j^{\prime}=0}^{p} \theta_{j j^{\prime}, l l^{\prime}} T_{j}\left(\tilde{\boldsymbol{\Delta}}_{r}\right) \mathbf{X}_{l^{\prime}} T_{j^{\prime}}\left(\tilde{\boldsymbol{\Delta}}_{c}\right)\right), \quad l=1, \ldots, q
$$

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
\square Separable convolution (sMGCNN)

- Complexity: $\mathcal{O}(m+n)<\mathcal{O}(m n)$

$$
\tilde{\mathbf{w}}_{l}=\xi\left(\sum_{l^{\prime}=1}^{q^{\prime}} \sum_{j=0}^{p} \theta_{j, l^{\prime}}^{r} T_{j}\left(\tilde{\boldsymbol{\Delta}}_{r}\right) \mathbf{w}_{l^{\prime}}\right), \quad \tilde{\mathbf{h}}_{l}=\xi\left(\sum_{l^{\prime}=1}^{q^{\prime}} \sum_{j^{\prime}=0}^{p} \theta_{j^{\prime}, l l^{\prime}}^{c} T_{j^{\prime}}\left(\tilde{\boldsymbol{\Delta}}_{c}\right) \mathbf{h}_{l^{\prime}}\right)
$$

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

\square Architectures

- RNN: diffuse the score values $\tilde{X}^{(t)}$ progressively.

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
\square Loss
■ $\Theta, \theta_{r}, \theta_{c}$: chebyshev polymial coefficients
■ $\sigma:$ LSTM, $T:$ number of iterations

- MGCNN

$$
\ell(\boldsymbol{\Theta}, \boldsymbol{\sigma})=\left\|\mathbf{X}_{\boldsymbol{\Theta}, \boldsymbol{\sigma}}^{(T)}\right\|_{\mathcal{G}_{r}}^{2}+\left\|\mathbf{X}_{\boldsymbol{\Theta}, \boldsymbol{\sigma}}^{(T)}\right\|_{\mathcal{G}_{c}}^{2}+\frac{\mu}{2}\left\|\boldsymbol{\Omega} \circ\left(\mathbf{X}_{\boldsymbol{\Theta}, \boldsymbol{\sigma}}^{(T)}-\mathbf{Y}\right)\right\|_{\mathbf{F}}^{2} .
$$

■ sMGCNN

$$
\ell\left(\boldsymbol{\theta}_{r}, \boldsymbol{\theta}_{c}, \boldsymbol{\sigma}\right)=\left\|\mathbf{W}_{\boldsymbol{\theta}_{r}, \boldsymbol{\sigma}}^{(T)}\right\|_{\mathcal{G}_{r}}^{2}+\left\|\mathbf{H}_{\boldsymbol{\theta}_{c}, \boldsymbol{\sigma}}^{(T)}\right\|_{\boldsymbol{\mathcal { G }}_{c}}^{2}+\frac{\mu}{2}\left\|\boldsymbol{\Omega} \circ\left(\mathbf{W}_{\boldsymbol{\theta}_{r}, \boldsymbol{\sigma}}^{(T)}\left(\mathbf{H}_{\boldsymbol{\theta}_{c}, \boldsymbol{\sigma}}^{(T)}\right)^{\top}-\mathbf{Y}\right)\right\|_{\mathrm{F}}^{2}
$$

Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS
\square Algorithm

```
Algorithm 1 (RMGCNN)
input \(m \times n\) matrix \(\mathbf{X}^{(0)}\) containing initial val-
    ues
    for \(t=0: T\) do
    2: Apply the Multi-Graph CNN (13) on \(\mathbf{X}^{(t)}\)
    producing an \(m \times n \times q\) output \(\tilde{\mathbf{X}}^{(t)}\).
    3: for all elements \((i, j)\) do
4: Apply RNN to \(q\)-dim \(\tilde{\mathbf{x}}_{i j}^{(t)}=\)
                \(\left(\tilde{x}_{i j 1}^{(t)}, \ldots, \tilde{x}_{i j q}^{(t)}\right)\) producing incremental
update \(d x_{i j}^{(t)}\)
5: end for
6: \(\quad\) Update \(\mathbf{X}^{(t+1)}=\mathbf{X}^{(t)}+\mathbf{d} \mathbf{X}^{(t)}\)
7: end for
```


Fixed graph: Multiple graphs

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

\square Results

- MovieLens dataset:
$\checkmark \quad 100,000$ ratings (1-5) from 943 users on 1682 movies (6.3\%).
\checkmark Each user has rated at least 20 movies.
\checkmark User: user id |age | gender | occupation | zip code
\checkmark Movie: movie id | movie title | release date | video release date |
IMDb URL | unknown | Action |Adventure | Animation |
Children's | Comedy | Crime | Documentary | Drama | Fantasy |
of different matrix completion methods on the MovieLens dataset.

METHOD	RMSE
GLOBAL MEAN	1.154
USER MEAN	1.063
MOVIE MEAN	1.033
MC [9]	0.973
IMC [[17, 42]	1.653
GMC [19]	0.996
GRALS []3]]	0.945
sRMGCNN	$\mathbf{0 . 9 2 9}$

Variable graph: GraphSAGE

Inductive Representation Learning on Large Graphs, 2017, NIPS
\square Desiderata $=>$ well generalized.

- Invariant to node ordering
\checkmark No graph isomorphism problem (https://en.wikipedia.org/wiki/Graph isomorphism)

Graph G | An isomorphism |
| :--- |
| between G and H |

- Locality
\checkmark Operations depend on the neighbors of a given node
- Number of model parameters should be independent of graph size
- Model should be independent of graph structure and we should be able to transfer the model across graphs.

Variable graph: GraphSAGE

Inductive Representation Learning on Large Graphs, 2017, NIPS
\square Learn to propagate information across the graph to compute node features.

1. Sample neighborhood

2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information

Variable graph: GraphSAGE

Inductive Representation Learning on Large Graphs, 2017, NIPS
\square Update

- $h_{A}^{(0)}$: attribute of node A

■ $\quad \sum(\cdot)$:aggregator function(e.g., avg/lstm/max - pooling)

Update for node A :

Variable graph: GraphSAGE

Inductive Representation Learning on Large Graphs, 2017, NIPS
\square Algorithm
initialize representations as features

classification (cross-entropy) loss

Variable graph: GraphSAGE

Inductive Representation Learning on Large Graphs, 2017, NIPS
\square Training

- Batch

- Learnable parameters
\checkmark Aggregate function
\checkmark Matrix W

Variable graph: Graph Attention Network

Graph attention networks, 2018, ICLR
\square Specify different weights to different nodes in a neighbor.

- Self-attention

Variable graph: Graph Attention Network

Graph attention networks, 2018, ICLR
\square Specify different weights to different nodes in a neighbor.

- Aggregation (K-head attention)

Variable graph: Graph Attention Network

Graph attention networks, 2018, ICLR
\square Experiments

- Datasets

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
\# Nodes	$2708(1$ graph $)$	$3327(1$ graph $)$	$19717(1$ graph $)$	$56944(24$ graphs $)$
\# Edges	5429	4732	44338	818716
\# Features/Node	1433	3703	500	50
\# Classes	7	6	3	121 (multilabel $)$
\# Training Nodes	140	120	60	44906 (20 graphs)
\# Validation Nodes	500	500	500	$6514(2$ graphs $)$
\# Test Nodes	1000	1000	1000	5524 (2 graphs)

Variable graph: Graph Attention Network

Graph attention networks, 2018, ICLR -

\square Experiments

- Transductive learning (single fixed graph)
- Inductive learning (unseen nodes / new graph)

Transductive			
Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et a., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu \& Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf \& Welling, 2017)	81.5%	70.3%	$\mathbf{7 9 . 0 \%}$
MoNet (Monti et al., 2016)	$81.7 \pm 0.5 \%$	-	$78.8 \pm 0.3 \%$
GCN-64*	$81.4 \pm 0.5 \%$	$70.9 \pm 0.5 \%$	$\mathbf{7 9 . 0} \pm 0.3 \%$
GAT (ours)	$\mathbf{8 3 . 0} \pm 0.7 \%$	$\mathbf{7 2 . 5} \pm 0.7 \%$	$\mathbf{7 9 . 0} \pm 0.3 \%$

Inductive	
Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et a., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	$\mathbf{0 . 9 7 3} \pm 0.002$

Tasks

\square Citation networks
\square Recommender systems
\square Medical imaging
\square Particle physics and Chemistry
\square Computer graphics
\square

