

Graph Neural Network

Fang Yuanqiang, 2019/05/18

Graph Neural Network

University of the strength of

- □ Why GNN?
- Preliminary
- □ Fixed graph
 - Vanilla Spectral Graph ConvNets
 - ChebyNet
 - GCN
 - CayleyNet
 - Multiple graphs
- Variable graph
 - GraphSAGE
 - Graph Attention Network
- **Tasks**

Why GNN?

Euclidean domain & Non-Euclidean domain

Audio signals

Images

Social networks

Functional networks

Regulatory networks

3D shapes

Why GNN?

ConvNets and Euclidean geometry

- Data (image, video, sound) are compositional, they are formed by patterns that are:
 - ✓ Local \rightarrow convolution
 - ✓ Multi-scale (hierarchical) \rightarrow downsampling/pooling
 - ✓ Stationary \rightarrow global/local invariance

Why GNN?

Extend ConvNets to graph-structured data

- Assumption: Non-Euclidean data are locally stationary and manifest hierarchical structures.
- How to define compositionality on graphs? (conv. & pooling)
- How to make them **fast**? (linear complexity)

Theory

- Graph theory
- Convolution, spectral convolution
- Fourier transform
- Riemannian manifold
- Reference

.

- http://geometricdeeplearning.com/slides/NIPS-GDL.pdf
- http://helper.ipam.ucla.edu/publications/dlt2018/dlt2018_14506.pdf
- https://www.zhihu.com/question/54504471?sort=created

- 🗆 Graph
 - Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - Vertices $\mathcal{V} = \{1, \dots, n\}$
 - Edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
 - Vertex weights $b_i > 0$ for $i \in \mathcal{V}$
 - Edge weights $a_{ij} \ge 0$ for $(i, j) \in \mathcal{E}$
 - Vertex fields $L^2(\mathcal{V}) = \{f : \mathcal{V} \to \mathbb{R}^h\}$ Represented as $\mathbf{f} = (f_1, \dots, f_n)$
 - Hilbert space with inner product

 $\langle f,g\rangle_{L^2(\mathcal{V})}=\sum_{i\in\mathcal{V}}a_if_ig_i$

Graph Laplacian

- Represented as a positive semi-definite $n \times n$ matrix
 - Unnormalized Laplacian $\Delta = D A$
 - Normalized Laplacian $\Delta = I D^{-1/2}AD^{-1/2}$
 - Random walk Laplacian $\Delta = I D^{-1}A$

where $\mathbf{A} = (a_{ij})$ and $\mathbf{D} = \operatorname{diag}(\sum_{j \neq i} a_{ij})$

• Eigendecomposition of graph Laplacian:

$$\Delta = \Phi \Lambda \Phi^ op$$

where
$$\mathbf{\Phi} = (\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_n)$$
 and $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
 $(\mathbf{\Phi}^{\top} \mathbf{\Phi} = \mathbf{I})$

Convolution: continuous

• Given two functions $f, g: [-\pi, \pi] \to \mathbb{R}$ their convolution is a function

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

- Shift-invariance: $f(x x_0) \star g(x) = (f \star g)(x x_0)$
- Convolution theorem: Convolution can be computed in the Fourier domain as

$$\widehat{(f \star g)} = \hat{f} \cdot \hat{g}$$

• Efficient computation using FFT: $O(n \log n)$

Convolution: discrete

• Convolution of two vectors $\mathbf{f} = (f_1, \dots, f_n)^\top$ and $\mathbf{g} = (g_1, \dots, g_n)^\top$

Preliminary: aside

□ "Conv" in Deep Neural Networks.

Preliminary: aside

"Conv" in Deep Neural Networks.

Preliminary: aside

Conv" in Deep Neural Networks is actually "Cross-correlation".

class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) [source]

Applies a 1D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, C_{in}, L) and output (N, C_{out}, L_{out}) can be precisely described as:

$$out(N_i, C_{out_j}) = bias(C_{out_j}) + \sum_{k=0}^{C_{in}-1} weight(C_{out_j}, k) \star input(N_i, k)$$

where \star is the valid cross-correlation operator, N is a batch size, C denotes a number of

channels, L is a length of signal sequence.

stride controls the stride for the cross-correlation, a single number or a one-element tuple.
padding controls the amount of implicit zero-paddings on both

sides for padding number of points.

dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.

groups controls the connections between inputs and outputs. *in_channels* and *out_channels* must both be divisible by *groups*.

At groups=1, all inputs are convolved to all outputs.

At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated. At groups=`in_channels`, each input channel is convolved with its own set of filters (of size *out_channels*// *in_channels*).

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

https://pytorch.org/docs/0.3.1/nn.html#convolution-layers

Convolution: graph

• Spectral convolution of $f, g \in L^2(\mathcal{V})$ can be defined by analogy^[11]

$$(f \star g)_i = \sum_{k \ge 1} \underbrace{\langle f, \phi_k \rangle_{L^2(\mathcal{V})} \langle g, \phi_k \rangle_{L^2(\mathcal{V})}}_{\text{product in the Fourier domain}} \phi_{k,i}$$

• In matrix-vector notation

$$\begin{aligned} \mathbf{f} \star \mathbf{g} &= \Phi \left(\Phi^{\top} \mathbf{g} \circ \Phi^{\top} \mathbf{f} \right) \\ &= \Phi \operatorname{diag}(\hat{g}_{1}, \dots, \hat{g}_{n}) \Phi^{\top} \mathbf{f} \\ &= \Phi \hat{q}(\mathbf{\Lambda}) \Phi^{\top} \mathbf{f} = \hat{q}(\Phi \mathbf{\Lambda} \Phi^{\top}) \mathbf{f} = \hat{q}(\mathbf{\Lambda} \Phi^{\top}) \mathbf{f} \end{aligned}$$

g: filter **f**: signal ĝ(Λ): diagonal matrix, function of Λ.

- Not shift-invariant (G has no circulant structure)
- Filter coefficients depend on basis ϕ_1, \ldots, ϕ_n
- Expensive computation (no FFT): $O(n^2)$

Graph pooling

- Produce a sequence of coarsened graphs
- Max or average pooling of collapsed vertices
- Binary tree arrangement of node indices

© As efficient as 1D-Euclidean grid pooling.

Locally connected networks

$$\mathbf{f}_l = l$$
-th data feature on graphs, $\dim(\mathbf{f}_l) = n \times 1$

$$\mathbf{g}_l = l$$
-th feature map, $\dim(\mathbf{g}_l) = n \times 1$

Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU) 16

Fixed graph: Vanilla Spectral Graph ConvNets Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

Locally connected networks

Figure 2: Spatial Construction as described by (2.1), with K = 2. For illustration purposes, the pooling operation is assimilated with the filtering stage. Each layer of the transformation loses spatial resolution but increases the number of filters.

Fixed graph: Vanilla Spectral Graph ConvNets Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

- Spectral convolution
 - $W \in \mathbb{R}^{n \times n}$, diagonal matrix of learnable spectral filter coefficients at each layer.

$$\mathbf{g}_l^{(k)} = \xi \left(\sum_{l'=1}^{q^{(k-1)}} \mathbf{\Phi} \mathbf{W}_{l,l'}^{(k)} \mathbf{\Phi}^\top \mathbf{g}_{l'}^{(k-1)} \right)$$

Table 1: Classification results on MNIST subsampled on 400 random locations, for different architectures. FCN stands for a fully connected layer with N outputs, LRFN denotes the locally connected construction from Section 2.3 with N outputs, MPN is a max-pooling layer with Noutputs, and SPN stands for the spectral layer from Section 3.2

method	Parameters	Error
Nearest Neighbors	N/A	4.11
400-FC800-FC50-10	$3.6 \cdot 10^{5}$	1.8
400-LRF1600-MP800-10	$7.2 \cdot 10^{4}$	1.8
400-LRF3200-MP800-LRF800-MP400-10	$1.6 \cdot 10^{5}$	1.3
400-SP1600-10 ($d_1 = 300, q = n$)	$3.2 \cdot 10^{3}$	2.6
400-SP1600-10 ($d_1 = 300, q = 32$)	$1.6 \cdot 10^{3}$	2.3
400-SP4800-10 ($d_1 = 300, q = 20$)	$5 \cdot 10^3$	1.8

Each sample is a graph!

Fixed graph: Vanilla Spectral Graph ConvNets Spectral Networks and Deep Locally Connected Networks on Graphs, 2014, ICLR

- Analysis
 - © First spectral graph CNN architecture
 - © No guarantee of spatial localization of filters
 - \odot O(n) parameters per layer
 - \odot O(n^2) computation of forward and inverse Fourier transforms ϕ, ϕ^{T} (no FFT on graphs)
 - \odot Filters are basis-dependent \Rightarrow does not generalize across graphs

Fixed graph: ChebyNet

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS

Polynomial parametrization for localized filters

$$y = \mathbf{\Phi} g_{\theta}(\mathbf{\Lambda}) \mathbf{\Phi}^T x, \mathbf{\Phi}^T \mathbf{\Phi} = \mathbf{\Lambda}$$

Polynomial filter

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$
$$y = \mathbf{\Phi} \sum_{k=0}^{K-1} \theta_k \Lambda^k \mathbf{\Phi}^T x = \sum_{k=0}^{K-1} \theta_k \mathbf{L}^k x$$

Chebyshev polynomial

$$g_{\theta}(\boldsymbol{\Lambda}) = \sum_{k=0}^{K-1} \theta_k T^k(\widetilde{\boldsymbol{\Lambda}})$$

$$\checkmark \quad \text{Cost:} \quad \mathcal{O}(K|\mathcal{E}|) \ll \mathcal{O}(n^2)$$

Why localized?

 $d_{\mathcal{G}}(i,j) > K$ implies $(L^K)_{i,j} = 0$ 21

Fixed graph: ChebyNet

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS

- Experiments
 - MNIST: each digit is a graph

$$W_{ij} = \exp\left(-\frac{\|z_i - z_j\|_2^2}{\sigma^2}\right)$$

Text categorization: 10,000 key words make up the graph.

Model	Accuracy
Linear SVM	65.90
Multinomial Naive Bayes	68.51
Softmax	66.28
FC2500	64.64
FC2500-FC500	65.76
GC32	68.26

Table 2: Accuracies of the proposed graph CNN and other methods on 20NEWS.

Figure 3: Time to process a mini-batch of S = 100 20NEWS documents w.r.t. the number of words n.

		Accuracy		
Dataset	Architecture	Non-Param (2)	Spline (7) [4]	Chebyshev (4)
MNIST MNIST	GC10 GC32-P4-GC64-P4-FC512	95.75 96.28	97.26 97.15	97.48 99.14

Table 3: Classification accuracies for different types of spectral filters (K = 25).

Fixed graph: ChebyNet

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016, NIPS

- \odot Filters are exactly localized in *r*-hops support
- \odot O(1) parameters per layer
- No computation of φ, $φ^T ⇒ O(n)$ computational complexity (assuming sparsely-connected graphs)
- © Stable under coefficients perturbation
- \odot Filters are basis-dependent \Rightarrow does not generalize across graphs

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR

Simplification of ChebyNet

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_{k} T_{k}(\tilde{L}) x$$

$$\approx \theta'_{0} x + \theta'_{1} (L - I_{N}) x$$

$$= \theta'_{0} x - \theta'_{1} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

$$\approx \theta \left(I_{N} + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

$$\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR

Input-output

$$Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$$

■ $X \in \mathbb{R}^{N \times C}$, *C*-d feature vector for *N* nodes.

- $\Theta \in \mathbb{R}^{C \times F}$, matrix of filter parameters.
- $Z \in \mathbb{R}^{N \times F}$, *F*-d output vector for *N* nodes.

Two-layer network

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A} X W^{(0)}\right) W^{(1)}\right)$$

Loss over **labeled examples**

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

Fixed graph: GCN

Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR

Datasets

Whole dataset as a graph: $N = N_{train} + N_{val} + N_{test}$

Dataset	Туре	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg 3	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA 18	69.1	75.1	73.9	23.1
Planetoid* 29	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

26

Fixed graph: GCN Semi-Supervised Classification with Graph Convolutional Networks, 2017, ICLR

□ Visulization (one labeled point for each class)

27

Fixed graph: CayleyNet

CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters, 2017

Cayley transform

$$C(x) = \frac{x-i}{x+i}$$

Cayley polynomial

$$g_{\mathbf{c},h}(\lambda) = c_0 + 2\operatorname{Re}\left\{\sum_{j=1}^r c_j(h\lambda - i)^j(h\lambda + i)^{-j}\right\}$$

Cayley filter

$$\mathbf{G} = c_0 \mathbf{I} + \sum_{j=1}^r c_j \mathcal{C}^j(h \mathbf{\Delta}) + \overline{c_j} \mathcal{C}^{-j}(h \mathbf{\Delta})$$

Any spectral filter can be formulated as a Cayley filter.

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

 $\square \quad \text{Matrix} \ (\mathbb{R}^{m \times n}) \text{ completion}$

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

Matrix
$$(\mathbb{R}^{m \times n})$$
 completion
Problem:

$$\min_{\mathbf{X}} \operatorname{rank}(\mathbf{X}) \quad \text{s.t.} \quad x_{ij} = y_{ij}, \forall ij \in \Omega \quad (\text{NP-hard})$$

$$\max_{\mathbf{X}} \|\mathbf{X}\|_{*} + \frac{\mu}{2} \|\mathbf{\Omega} \circ (\mathbf{X} - \mathbf{Y})\|_{\mathrm{F}}^{2} \quad \|\cdot\|_{*} : sum \text{ of singular values}$$

$$\|\cdot\|_{F} : Frobenius \text{ norm}$$
Geometric matrix completion

$$\min_{\mathbf{X}} \|\mathbf{X}\|_{\mathcal{G}_{r}}^{2} + \|\mathbf{X}\|_{\mathcal{G}_{c}}^{2} + \frac{\mu}{2} \|\mathbf{\Omega} \circ (\mathbf{X} - \mathbf{Y})\|_{\mathrm{F}}^{2} \quad \|\cdot\|_{\mathcal{G}_{r}}^{2} = trace(\mathbf{X}^{T} \Delta_{r} \mathbf{X})$$

$$\|\mathbf{X}\|_{\mathcal{G}_{r}}^{2} = trace(\mathbf{X} \Delta_{c} \mathbf{X}^{T})$$
Factorized model

$$\checkmark \text{ Low-rank factorization (for large matrix): } \mathbf{X} = \mathbf{W}\mathbf{H}^{\top} \quad \begin{bmatrix}W, m \times r\\ H, n \times r\end{bmatrix}$$

$$\min_{\mathbf{W},\mathbf{H}} \frac{1}{2} \|\mathbf{W}\|_{\mathrm{F}}^{2} + \frac{1}{2} \|\mathbf{H}\|_{\mathrm{F}}^{2} + \frac{\mu}{2} \|\mathbf{\Omega} \circ (\mathbf{W}\mathbf{H}^{\top} - \mathbf{Y})\|_{\mathrm{F}}^{2}$$

$$30$$

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

Multi-graph CNNs (MGCNN)

 2-d Fourier transform of an matrix can be thought of as applying a 1-d Fourier transform to its rows and columns.

$$\hat{\mathbf{X}} = \mathbf{\Phi}_r^{ op} \mathbf{X} \mathbf{\Phi}_c$$

 Φ_r , eigenvecors w.r.t \mathcal{G}_r Φ_c , eigenvecors w.r.t \mathcal{G}_c

Multi-graph spectral convolution

$$\mathbf{X} \star \mathbf{Y} = \mathbf{\Phi}_r (\hat{\mathbf{X}} \circ \hat{\mathbf{Y}}) \mathbf{\Phi}_c^{ op}$$

p-order Chebyshev polynomial filters

$$\tilde{\mathbf{X}}_{l} = \xi \left(\sum_{l'=1}^{q'} \mathbf{X}_{l'} \star \mathbf{Y}_{ll'} \right) = \xi \left(\sum_{l'=1}^{q'} \sum_{j,j'=0}^{p} \theta_{jj',ll'} T_{j}(\tilde{\boldsymbol{\Delta}}_{r}) \mathbf{X}_{l'} T_{j'}(\tilde{\boldsymbol{\Delta}}_{c}) \right), \quad l = 1, \dots, q$$

input dim.: $m \times n \times q'$ output dim.: $m \times n \times q$

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

- □ Separable convolution (sMGCNN)
 - Complexity: $\mathcal{O}(m+n) < \mathcal{O}(mn)$

$$\tilde{\mathbf{w}}_{l} = \xi \left(\sum_{l'=1}^{q'} \sum_{j=0}^{p} \theta_{j,ll'}^{r} T_{j}(\tilde{\boldsymbol{\Delta}}_{r}) \mathbf{w}_{l'} \right), \qquad \tilde{\mathbf{h}}_{l} = \xi \left(\sum_{l'=1}^{q'} \sum_{j'=0}^{p} \theta_{j',ll'}^{c} T_{j'}(\tilde{\boldsymbol{\Delta}}_{c}) \mathbf{h}_{l'} \right)$$

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

- Architectures
 - RNN: diffuse the score values $\tilde{X}^{(t)}$ progressively.

 $\mathbf{X}^{(t+1)} = \mathbf{X}^{(t)} + \mathbf{d}\mathbf{X}^{(t)}$

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

Loss

- $\Theta, \theta_r, \theta_c$: chebyshev polymial coefficients
- σ : LSTM, T: number of iterations
- MGCNN

$$\ell(\boldsymbol{\Theta}, \boldsymbol{\sigma}) = \|\mathbf{X}_{\boldsymbol{\Theta}, \boldsymbol{\sigma}}^{(T)}\|_{\mathcal{G}_r}^2 + \|\mathbf{X}_{\boldsymbol{\Theta}, \boldsymbol{\sigma}}^{(T)}\|_{\mathcal{G}_c}^2 + \frac{\mu}{2}\|\boldsymbol{\Omega} \circ (\mathbf{X}_{\boldsymbol{\Theta}, \boldsymbol{\sigma}}^{(T)} - \mathbf{Y})\|_{\mathrm{F}}^2.$$
sMGCNN

$$\ell(\boldsymbol{\theta}_r, \boldsymbol{\theta}_c, \boldsymbol{\sigma}) = \|\mathbf{W}_{\boldsymbol{\theta}_r, \boldsymbol{\sigma}}^{(T)}\|_{\mathcal{G}_r}^2 + \|\mathbf{H}_{\boldsymbol{\theta}_c, \boldsymbol{\sigma}}^{(T)}\|_{\mathcal{G}_c}^2 + \frac{\mu}{2} \|\mathbf{\Omega} \circ (\mathbf{W}_{\boldsymbol{\theta}_r, \boldsymbol{\sigma}}^{(T)} (\mathbf{H}_{\boldsymbol{\theta}_c, \boldsymbol{\sigma}}^{(T)})^\top - \mathbf{Y})\|_{\mathrm{F}}^2$$

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

Algorithm

Algorithm 1 (RMGCNN)

input $m \times n$ matrix $\mathbf{X}^{(0)}$ containing initial values

- 1: for t = 0 : T do
- 2: Apply the Multi-Graph CNN (13) on $\mathbf{X}^{(t)}$ producing an $m \times n \times q$ output $\tilde{\mathbf{X}}^{(t)}$.
- 3: for all elements (i, j) do
- 4: Apply RNN to q-dim $\tilde{\mathbf{x}}_{ij}^{(t)} = (\tilde{x}_{ij1}^{(t)}, \dots, \tilde{x}_{ijq}^{(t)})$ producing incremental update $dx_{ij}^{(t)}$
- 5: end for
- 6: Update $\mathbf{X}^{(t+1)} = \mathbf{X}^{(t)} + \mathbf{d}\mathbf{X}^{(t)}$
- 7: end for

Geometric matrix completion with recurrent multi-graph neural networks, 2017, NIPS

Results

- MovieLens dataset:
 - ✓ 100,000 ratings (1-5) from 943 users on 1682 movies (6.3%).
 - ✓ Each user has rated at least 20 movies.
 - ✓ User: user id | age | gender | occupation | zip code
 - Movie: movie id | movie title | release date | video release date |
 IMDb URL | unknown | Action | Adventure | Animation |
 Children's | Comedy | Crime | Documentary | Drama | Fantasy |

Table 4: Performance (RMS error)
of different matrix completion meth-
ods on the MovieLens dataset.

Method	RMSE
GLOBAL MEAN	1.154
USER MEAN	1.063
MOVIE MEAN	1.033
MC 9	0.973
IMC [17, 42]	1.653
GMC 19	0.996
GRALS 33	0.945
sRMGCNN	0.929

Inductive Representation Learning on Large Graphs, 2017, NIPS

Desiderata => well generalized.

- Invariant to node ordering
 - ✓ No graph isomorphism problem (<u>https://en.wikipedia.org/wiki/Graph_isomorphism</u>)

Locality

- Operations depend on the neighbors of a given node
- Number of model parameters should be independent of graph size
- Model should be independent of graph structure and we should be able to transfer the model across graphs.

Inductive Representation Learning on Large Graphs, 2017, NIPS

Learn to propagate information across the graph to compute node features.

Inductive Representation Learning on Large Graphs, 2017, NIPS

Update

- $h_A^{(0)}$: attribute of node A
- $\sum(\cdot): aggregator \ function(e.g., avg/lstm/max pooling)$

Inductive Representation Learning on Large Graphs, 2017, NIPS

Algorithm

initialize representations as features

 $\begin{aligned} \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V}; \\ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \\ \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \mathsf{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ \mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \mathsf{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right) \end{aligned}$ end $\mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}_{\text{concatenate neighborhood info with}}$ end current representation and propagate $\mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}$ $= -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - \frac{1}{|Q|} \cdot \sum_{n=1}^{Q} \mathbb{E}_{v_n \sim P_n(v)}\log\left(-\sigma(\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$ classification (cross-entropy) loss

Inductive Representation Learning on Large Graphs, 2017, NIPS

- Learnable parameters
 - ✓ Aggregate function
 - Matrix W

Specify different weights to different nodes in a neighbor.
 Self-attention

Node features:
$$\mathbf{h} = \{ec{h}_1, ec{h}_2, \dots, ec{h}_N\}, ec{h}_i \in \mathbb{R}^F$$

Attention: importance of node *j* to node *i*.

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j) \quad j \in \mathcal{N}_i$$
$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

Variable graph: Graph Attention Network Graph attention networks, 2018, ICLR

- Specify different weights to different nodes in a neighbor.
 - Aggregation (K-head attention)

Variable graph: Graph Attention Network Graph attention networks, 2018, ICLR

Experiments

Datasets

Table 1: Summary of the datasets used in	our experiments.
--	------------------

	Cora	Citeseer	Pubmed	РРІ
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

Variable graph: Graph Attention Network

Graph attention networks, 2018, ICLR

Experiments

- Transductive learning (single fixed graph)
- Inductive learning (unseen nodes / new graph)

	ransductive		
Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al.) 2016)	$81.7\pm0.5\%$	_	$78.8\pm0.3\%$
GCN-64*	$81.4\pm0.5\%$	$70.9\pm0.5\%$	$\textbf{79.0} \pm 0.3\%$
GAT (ours)	$\textbf{83.0}\pm0.7\%$	$\textbf{72.5} \pm 0.7\%$	$\textbf{79.0} \pm 0.3\%$

Inductive		
Method	PPI	
Random	0.396	
MLP	0.422	
GraphSAGE-GCN (Hamilton et al., 2017)	0.500	
GraphSAGE-mean (Hamilton et al., 2017)	0.598	
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612	
GraphSAGE-pool (Hamilton et al., 2017)	0.600	
GraphSAGE*	0.768	
Const-GAT (ours)	0.934 ± 0.006	4
GAT (ours)	$\textbf{0.973} \pm 0.002$	

Tasks

- Citation networks
- Recommender systems
- Medical imaging
- Particle physics and Chemistry
- Computer graphics

.